
- The most popular flexible shaft coupling in Japan that is compliant with JIS B 1452 - 1991 "Flexible Flanged Shaft Couplings".
- Simple structure comprised of a flange and coupling bolts. Easy-to-mount.
- Bushings can be replaced just by removing coupling bolts. This makes maintenance and service easy.
- While it absorbs misalignment such as eccentricity and argument, it prevents noise by absorbing torsional vibration. It will not transmit thrust load, either.
- Two types are available: Cast Iron FCL and Carbon Steel **FCLS**.

Structure

 Materi 	al/Finish	♠ RoHS
	FCL	FCLS
Joint Main Unit	FC200 or more	S25C or more
Nut	Equivalent to SS400 Trivalent Chromate Treatment	Equivalent to SS400 Trivalent Chromate Treatment
Spring Lock Washers		SWRH62 Trivalent Chromate Treatment
Bushing	NBR B (12) -j1a1 (HS (JIS A)=70)	NBR B (12) -j1a1 (HS (JIS A)=70)
Washer	Equivalent to SS400 Trivalent Chromate Treatment	Equivalent to SS400 Trivalent Chromate Treatment
Bolt	Equivalent to SS400 Trivalent Chromate Treatment	Equivalent to SS400 Trivalent Chromate Treatment

• Full bore alteration service capability. We modify for individual shaft requirement that will allow you for immediate use.

Additional Setscrew at Shaft Hole / Keyway → P.xxxx Available / Add'l charge

Product Standard

The product standard of the flexible flanged shaft couplings is compliant with JIS B 1452 - 1991 "Flexible Flanged Shaft Couplings".

- Allowable value of the run-out of the joint outer diameter to the shaft hole center, and that of the joint surface near the outer diameter—0.03mm
- Allowance of the bolt hole pitch circle diameter and the bushing insertion hole pitch circle diameter, allowance of the pitch, and the run-out tolerance to the shaft bore center

		Officential
Pitch Circle Diameter	Pitch Circle Diameter and Pitch Allowance	Pitch Circle Diameter Run-out Tolerance
60 / 67 / 75	±0.16	0.12
85 / 100 / 115 / 132 / 145	±0.20	0.14
170 / 180 / 200 / 236	±0.26	0.18
260 / 300 / 355 / 450 / 530	±0.32	0.22
580 / 600 / 670	±0.40	0.28

• Dimensional allowance of each part of the joint

	Uı	nit : mm
Joint Outside Diameter A	-	g7
Bolt Hole and Bolt a	H7	g7
Washer Inside Diameter*1 a	-	+0.4
Bushing Inside Diameter, Washer Inside Diameter and Bolt Bushing Insertion Area Diameter a	+0.4	e9
Bushing Insertion Hole M	Н8	-
Bushing Outside Diameter p	-	0 -0.4
Bolt Bushing Insertion Area Length m	_	k12

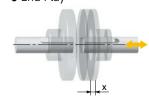
- *1: For those with the standard dimensions of 8, it is $^{+0.2}_{0.0}$.
- Each symbol is identical to that shown in the Dimension/ Performance table

renormance table.						
Bush width q dimensional allowance		Washer thickness t dimensional allowance				
Standard Dimension	Allowance	Standard Dimension	Allowance			
14 / 16 / 18	±0.3	3	+0.03 -0.43			
22.4 / 28 / 40	+0.1 -0.5	4	±0.29			
56 / 80	+0.2 -0.6	5	±0.4			
		7	±0.5			

- For the allowable length tolerances of non-fitting part sections to be cut, refer to JIS B 0405 tolerance class m.
- Performance of the Bushing

•		
Characteristics item	NBR (Nitrile rubber)	
Machine oil	Excellent	
Gasoline	Excellent	
Benzine	Impossible	
Ketone	Impossible	
Alcohol	Excellent	
Acid resistance	Weak acid	Good
ACIO resistance	Strong acid	OK
Impact resilience	Good	
Abrasion resistance	Excellent	
Aging Resistance	Excellent	
Tensile strength	Excellent	
Heat resistance (max. operating temperature, regular use)		90℃
Cold resistance (min. operating temperature, regular use)		−20°C

Alignment adjustment


- 1) Although the flexible flanged shaft coupling permits misalignment and transmits torque, if the misalignment exceeds the allowable value, vibration may occur or the life may be rapidly shortened. Be sure to perform alignment adjustment.
- ②Shaft center misalignment includes eccentricity (parallel error of both shaft centers), argument (angle error of both shaft centers), and end-play (shaft direction movement of the shaft). Adjust the shaft alignment so that it will not exceed the allowable value listed in the Dimension/ Performance table in this catalog.
- 3The allowable values of the misalignment listed in the Dimension/Performance table are for the case where any one of eccentricity, argument, and endplay occurs independently. Mixing of two or more misalignment causes each of the allowable values to be reduced to half.
- (4) Misalignment may occur not only in assembling into the device but also due to vibration, thermal expansion, and shaft bearing abrasion during operation. Therefore, it is recommended to keep the misalignment one third of the allowable value or less.
- Eccentricity, Parallel Offset Misalignment

• Argument, Angular Misalignment

End-Play

